行业资讯

您当前所在位置:测绘仪器 > 行业资讯 > GPS测量误差源分析

GPS测量误差源分析

时间:2012-11-09浏览:责任编辑:四川拓图测绘仪器

GPS测量误差按其生产源可分3大部分:GPS信号的自身误差,包括轨道误差和SA, AS影响;GPS信号的传输误差,包括太阳光压,电离层延迟,对流层延迟,多路径传播和由它们影响或其他原因产生的周跳;GPS接收机的误差,主要包括钟误差,通道间的偏差,锁相环延迟,码跟踪环偏差,天线相位中心偏差等。

轨道误差(星历误差)和SA、AS影响

有关部门提供一定精度的卫星轨道,以广播星历形式发播给用户使用,从而己知观测瞬间所观测卫星的位置,因而卫星轨道误差与星历误差是一个含义。卫星星历误差又等效为伪距误差。由于卫星轨道受地球和日、月引力场、太阳光压、潮汐等摄动力及大气阻力的影响,而其中有的是随机影响,不能精密确定,使卫星轨道产生误差。

控制网的静态GPS测量是利用载波相位测量,一般是由一个点设为己知点与一个待定点位同步观测GPS卫星,取得载波相位观测值,从而得出待定点位的坐标或两点间的坐标值,称为基线测量,短基线测量可以消除SA影响。动态测量解决SA影响的途径是实时差分定位(称Real-time),即在己知坐标点上布设基准点,通过基准站取得误差校正值,通过数据链实时传给导航定位的移动站,从而消除SA影响及两站的各种共同的误差,提高了移动站的导航定位精度。加滤波等处理的导航软件以及组合导航系统,己使导航定位精度差分距离在100km左右时达到亚米级,差分距离远于1500km时达到米级。

SA技术是选择可用性(Selective  Availability)的简称,它是由两种技术使用户的定位精度降低,一种技术是人为地施加周期为几分钟的呈随机特征的高频抖动信号,使GPS卫星频率10.23MHz加以改变,最后导致定位产生干扰误差,另一种技术是降低卫星星历精度,呈无规则的随机变化,使得卫星的真实位置增加了人为的误差。在2000年5月1日,美国关闭了运行长达10年的SA软件,从而使GPS C/A码单点定位精度可达到25m,测速精度为10cm/s。

AS技术( Anti-Spoofing)叫反电了欺骗技术,其目的是为了在和平时期保护其P码,不让非授权用户使用;战时防止敌方对精密导航定位作用的P码进行电了干扰。AS技术使得用C/A码工作的用户无法再和P码相位测量联合解算进行双频电离层精密测距修正,实际降低了用户定位精度。

确定GPS卫星轨道是减少星历误差的根本方法。利用区域性GPS跟踪网可以确定GPS卫星轨道。跟踪站地心坐标的误差对卫星轨道的影响是10倍或更大。因此,要提供优于2m精度的卫星轨道,要求跟踪站地心坐标的精度优于0.1m。据介绍,采用强约束全球站松弛轨道的加权约束基准方法,可以得出优于5cm的相对坐标值,基本上可以满足我国现阶段区域性定轨的需要。

太阳光压对GPS卫星产生摄动加速度

太阳光压对卫星产生摄动影响卫星的轨道,它是精密定轨的最主要误差源。太阳光压对卫星产生的摄动加速度受太阳与地球间距离的变化而引起太阳辐射压力的变化,也与太阳光强度、卫星受到的照射面程、照射面积与太阳的几何关系及照射面的反射和吸收特性有关,由于卫星表面材料的老化、卫星姿态控制的误差等也使太阳光压发生变化。

己有的太阳光压改正模型有:标准光压模型、多项式光压模型和ROCK4光压摄动模型,这几种光压模型精度基本上相当,可以满足lm定轨的要求。最近有人提出,用附加随机过程参数的方法或者对较长的轨道用一阶三角多项式逼近非模型化的长期项影响,可得到更理想的结果,甚至可以满足0.1一0.2m精度的定轨要求。

电离层的信号传播延迟

电离层引起码信号传播延迟,它与沿卫星和用户接收机视线方向上的电子密度有关,在垂直方向上延迟值在夜间平均可达3m左右,白天可达15m,在低仰角情况下分别可达9m和45 m,在反常时期这个值还会加大。为了削弱电离层延迟所引起的定位精度损失,在长基准测量中用双频接收机采集GPS数据,对观测成果进行实时电离层延迟改正,可以获得很好的效果。对于单频接收机的用户,虽然可以用数学模型进行改正,但其残差仍然很大。也可以用提高卫星高度截止角减少其影响。

在赤道和地极附近存在着严重的电离层赤道扰动和地极扰动。因而,利用双频GPS接收机观测,只适用于没有电离层扰动的中纬度地区来进行电离层改正。最坏的电离层影响是在赤道附近。强烈影响大概在±10°以内的区域,此影响可延续至赤道两边的±30°。扰动一般在日落到午夜发生,延续到第二天黎明。它是由电离层中电子含量小规模无规律引起的,它有几米到几千米的波长,这些无规律的电子密度能够产生衍射和反射效应,接收的信号能使相位和振幅变异,它能妨碍GPS卫星信号跟踪,引起周跳。甚至基线在10km以内时,强烈的电子水平分布梯度能使模糊度解算不能进行。地极扰动没有赤道附近那么强烈,它的发生与磁暴活动有关,它主要是位于磁纬的69°~70°的极光带。在强磁暴期间,这些极光影响能延仲到中纬度地区,使周跳数增多。

对流层的信号传播延迟

对流层延迟是电磁波信号通过对流层时其传播速度不同于真空中光速所引起的。分干大气分量和湿大气分量。在低仰角时它可以达到20m。其中干大气分量约占80%一90%,可以用一定的模型将大部分改正掉。湿大气分量数值虽不大,但它随纬度和高度的变化呈现出很大的变化,而且随时间变化得非常快。由于空气中的水汽和干气相当难以预测,所以测量中往往测量的是干、湿分量混合体,故难以得到它的准确值。到目前为止己开发出来了许多计算湿对流层延迟的实用模型,但干对流层延迟仍为主要误差源。

对流层延迟与电离层延迟一样,主要影响天顶方向,由于它们的相关性,在短基线测量中会很好的消除,在长基线测量中采取双频接收机也能很好的减少其影响。对于对流层延迟,多用随机过程模拟和滤波方法进行参数估算及函数逼近方法模拟改正。好的数学模型改正可以使基线天顶方向提高到水平方向(平面坐标)接近的水平。

多路径误差

多路径误差是指GPS信号射至其他的物体上又反射到GPS接收天线上,对GPS信号直接射至GPS接收天线上的直接波的干扰。多路径误差的大小,取决于反射波的强弱和用户天线抗衡反射波的能力。用户天线附设仰径板,当仰径板半径为40cm,天线高于lm~2m,可抑制多路径影响。

据大量资料的分析统计,多路径误差有以下危害:①当边长小于l0km时,主要误差源是天线的对中误差和多路径误差;②多路径误差对点位坐标的影响,在一般环境下可达5~9cm,在高反射环境下可达15cm;③在高反射环境(城镇、水体旁、沙滩、飞机、舰船等)下,码信号受多径误差的影响,可导致接收机的相位失锁;④实践证明,观测值中的很多周跳都是由于多路径误差引起的。

接收机天线附近的水平面、垂直面和斜面都会使GPS信号产生镜反射。天线附近的地形地物,例如道路、树木、建筑物、池塘、水沟、沙滩、山谷、山坡等都能构成镜反射。因此,选择GPS点位时应特别注意避开这些地形地物,采取提高天线高度和其他防止多路径误差的措施。

周跳

周跳也称为失周。在精密的GPS相对定位中采用的观测值是相位观测值。相位观测值是接收机本机振荡产生的相位与接收到的卫星载波相位之差,在量测时,只能测到不足1周的小数部分(可准到0.01周)。在理想条件下,接收机在锁住卫星后可保持跟踪,从而测出包括整数部分的相位变化量,因此每个历元的相位观测量与接收机到卫星的距离相差载波波长的一个整数倍,它是一个固定不变的值,该整数被称为整周模糊度,在解算时与其他参数一起求出。在实际观测条件下,接收机往往会由于某种原因(如卫星信号被挡住)对卫星短时间失去跟踪,在失去跟踪时间内相位的变化就不能被测出,称为失周或失锁,也称为周跳。在短距离GPS基线定位中,大气轨道误差基本被抵消,电离层和对流层延迟由于它们的相关性也消除了大部分影响,失周大小能保持较好的整数特性,较容易处理。

产生周跳原因,可分为外部原因和接收机质量问题。外部原因有:卫星信号被天线附近的地形地物短时间遮挡;动态测量时,由于载体运动速度太快或天线倾斜使信号丢失;由于多路径误差、电离层活动加剧、对流层延迟影响,使卫星信号的噪声偏大而产生周跳。GPS接收机质量不佳:卫星信号在接收机电路中受干扰,导致信号丢失;接收机内信号处理单元质量不佳;接收机内跟踪环路设计不理想,在某些环境下将使相位发生180°或90°位移,从而产生周跳或1/4周跳。

在GPS相位测量中,观测数据中大于10周的周跳,在数据预处理时不难发现,可予以消除。然而,小于10周的周跳,特别是1~5周的周跳,以及半周跳和1/4周跳,不易发现,而对含有周跳的观测值,周跳的影响视为观测的偶然误差,因而严重影响坐标的精度。据拉查佩利的统计,一个周跳对经度、纬度、高程的影响为:△L = 0.03~0.06m ;△B = 0.10~0.18m;△h=0.14~0.16m。可见,即使只有一个卫星存在一个周跳,也会对所测点产生几厘米的误差。由于一个点位坐标是由4个以上卫星所确定的,故周跳对点位坐标的影响取决于以下因素:1.所测卫星的数量;2所测卫星组成的儿何图形;3.周跳影响各分量的大小和周跳次数。然而,即使只有一个卫星残存有一个周跳,也会使该次定位点位坐标有几毫米至几厘米的误差。由此可见,凡精度要求达到厘米级或分米级的GPS定位测量,都必须清除观测数据中的全部周跳。

周跳的处理可分为2步:从观测数据中探测出全部周跳及将探测出的周跳加以全部修复。周跳的探测和修复都应在观测数据的预处理阶段进行。GPS相对定位中的失周处理是非常麻烦复杂的问题,因而应尽量避免周跳的发生。为此,对于仪器本身应通过仪器检定,在测定其质量确定可靠时才能用于测量作业,在测量作业中尤其应防止多路径的影响,避免失周的现象发生。对于周跳的探测和修复己有许多软件处理方法。可以用组成单差、双差、3差和4差,根据组成高阶差数后,周跳被成倍放大,阶数越高,放大倍数越大的特性,能够快速有效地探测出周跳。先进的GPS接收机内装有“专用算法器”,可探测出大部分周跳,供处理数据时使用。避免和正确处理周跳,是提高GPS测量精度的关键。

GPS测量仪器的质量检定

上面己经谈到GPS接收机常存在钟误差、通道间的偏差、锁相环延迟、码跟踪环偏差、天线相位中心偏差等。所以必须先了解仪器性能、工作特性及其可能达到的精度水平。它是制定GPS作业计划的依据,也是GPS定位测量顺利完成的重要保证。也就是说对GPS测量仪器必须先进行作业前的检验,没有检验的仪器是不能用于作业的。

测量型GPS接收机实测检验项目有:①天线相位中心稳定性测试;②内部噪声水平测试;③野外作业性能及不同测程精度指标的测试;④频标稳定性检验和数据质量的评价;⑤高低温性能测试。

对于GPS控制网基线测量,基线长度较短的情况下,GPS的轨道误差,太阳光压影响及美国SA技术基本对测量精度不发生影响。在作业过程中,在GPS接收机满足作业精度要求的情况下,测量的主要误差源是多路径误差、周跳和点位的对中误差。作业中应尽量避免它们的发生并减少其误差。电离层延迟和对流层延迟主要影响基线测量两点间的高差精度,两点间高差愈大影响也愈大。如果改正公式和参数不恰当,它可能产生每lm高差就有lmm的误差。电离层和对流层延迟对平面坐标((L, B或X,Y)影响甚微,几乎没有影响。电离层和对流层延迟具有相关性,基线愈短相关性越强,在短基线测量中它们的影响会有很好的消除。

信息标题:GPS测量误差源分析

本文地址:http://www.mapping178.com/news-1464.html

温馨提示:四川拓图伟业测绘科技有限公司竭诚为您服务,点击了解成都测绘公司

百度分享按钮
阅读本文的人还看过:
您可能也喜欢:

与“GPS测量误差源分析”有关联的产品:

  • 美国apresys M4008双筒望远镜

    美国apresys M4008双

    APRESYS双筒望远镜 M40(8x40) 放大倍数:8倍 物镜口径:40毫米 ...

    了解详细 >>

  • 摩托罗拉Mag One A8对讲机

    摩托罗拉Mag One A8对

    技术指标 16个信道 允许用户将自己的工作团队分成不同的通话组, ...

    了解详细 >>

  • 美国盖瑞特MY-207手持金属探测器

    美国盖瑞特MY-207手持

    盖瑞特高灵敏度手持金属探测器全部采用优质元器件制作,探测精度...

    了解详细 >>

  • 宾得T-600 系列中文数字键全站仪

    宾得T-600 系列中文数

    T-600系列全站仪内置大容量内存和各种应用测量程序,功能强大、...

    了解详细 >>

拓图测绘人气专区

拓图测绘仪器销售区域(咨询18980935968可以获得当地仪器维修、校正等售后服务网点)

重庆市:万州、涪陵、渝中、大渡口、江北、沙坪坝、九龙坡、南岸、北碚、渝北、巴南、黔江、长寿、江津、合川、永川、南川、綦江、潼南、铜梁、大足、荣昌、璧山、梁平、城口、丰都、垫江、武隆、忠县、开县、云阳、奉节、巫山、巫溪、石柱、秀山、酉阳、彭水。

云南省:昆明、曲靖、玉溪、保山、昭通、丽江、普洱、临沧、楚雄、红河、文山、西双版纳、大理、德宏、怒江、迪庆。

贵州省:贵阳、六盘水、遵义、安顺、铜仁、黔西南、毕节、黔东南、黔南。

四川省:成都、自贡、攀枝花、泸州、德阳、绵阳、广元、遂宁、内江、乐山、南充、眉山、宜宾、广安、达州、雅安、巴中、资阳、阿坝、甘孜、凉山。